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DYNAMIC SNAP-THROUGH OF IMPERFECT
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N. C. Huang2 and W. Nachbar?

ABSTRACT

Dynamic snap-through or dynamic buckling of imperfect
viscoelastic shallow arches with hinged ends is considered under
step loads of infinite duration. Attention is principally devoted to the
influence both of small imperfections and of small amounts of damping,
acting together, on the critical loads. For the problem considered,
the Vo;gt model is used for viscoelasticity, the deflection is represent-
ed by the first two harmonic modes, and imperfections have the shape
of the second (antisymmetric) mode. Results obtained by numerical
integration of the differential equations show that the critical load
exhibits a jump discontinuity in the limit both for vanishing imperfect-
ion and for vanishing viscosity. Critical loads for slight imperfect
and elastic (inviscid) arches are slightly higher than those from the
saddle point formula of Hoff and Bruce (J. Math. Physics, 32, 1954,
276), confirming that the formula gives a lower bound on the critical
load. However, critical loads for arches with slight imperfection and
slight viscosity are considerably higher than for the elastic arches.
Another closed-form expression is shown to be in good agrepment with
these results. For finite amounts of viscosity, the •'tical loads tend
rapidly to the values obtained for infinite viscosity, which are the same
as the critical loads for quasi-static buckling. Apart from the jump
discontinuity at zero, the critical load for any viscosity decreases con-
tinuously and monotonically with imperfection.
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Nomenclature

A cross section area

a Eq. (10)
n

b (t) Eq. (11)
n

D total eaergy dissipation, Eq. (26)

E Young's modulus

E effective spring constant for Voigt solid
ot f Eq. (12)

H horizontal thrust

I moment of inertia of cross section of arch

K kinetic energy, Eq. (25)

L span of arch

T M bending moment

MI, M2 local mininais - see discussion above Eq. (40)

n any positive integer

q (x) load on arch

R Eq. (15)
n

r =Ri, load parameter

r minimum load for snap-through
c

r Eq. (49)
cg

r critical load of Hoff and Bruce, Eq. (43)
cm
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r cpperfect arch dynamic snap-through load, Eq. (32)

r csquasi-static snap-through - see last column of Table 3

t time

U potential energy, "Eq. (24)

U potential energy at' critical point
e

V vertical shear

w (x, t) deflection

w (x) initial deflection

x horizontal coordinate

y M) b1 (t); first harmonic of deflection

y -y(O): rise of arch

value of y at critical point

Ycl Yc 2 critical values of y; Eqs. (47a, b)

z (t) Eb 2 (t); seconid harmonic of deflection

z z (0): imperfection amplitude
0

ze value of z at critical point

approximate rsho'rtening of arch length, Eq. (5)

effective viscos~ty for Voigt solid

nondimensional viscosity, Eq. (15)

P mass of arch per unit length

nondimensional time, Eq. (15)
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.1 INTRODUCTION

In this paper, the dynamic snap-through or dyL,,ituc

buckling behavior of imperfect viscoelastic shallow arches under a

suddenly applied load of infinite duration is conmidered. The critical

load is defined as the smallest magnitude of load under which the arch

can deform to a si±apped-through position.

The problem of ths dynamic buckling of sinusoidal elastic

: shallow arches has been studied by 1Hoff and Bruce ( I] 4 and by

Simitses [2) with analyses based upon the behavior of the trajectories

describing the motion on the potential surface. Since small geometric

imperfections, or small disturbing loads or initial velocities, affect

the shape of the potential surface only to the second order in small

quantities, it is possible to include the effects of such perturbations by

an analysis based upon the potential surface for the perfect structure.

This analysis for the arch shows that, if the arch is not very flat, the

critical load of a perfect arch having the shape of sin x will be assoc-

iated with an asymmetric buckling mode shape sin Zx. This critical

load is obtained from the condition that it is possible for -1 trajectory

Numbers in brackets designate references at the end of the paper.
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to reach a saddle point on the potential surface. The critical load is

that load for which the potential energy at the saddle point becomes

equal to the total energy. 
4

Several reasonabil ubjecuons have been raised to this

potential surface method of analysis. One objection is that the method

is limited to problems with a small number of degrees of freedom.

The arguments used in the potential surface method are essentially

geometric, and it is much more difficult to deal with the hyper-

surfaces that are encountered if more than two degrees of freedom are

considered. We will not attempt in this paper to generalize this method

of analysis but will, in fact,confine our discussion to a specific system

with two degrees of freedom where the method has already proven

lea s ible. I)
Another objection, and the one to which the major attention

of this paper will be devoted, is that the saddle point criteria does not 4
assure that the solution to the differential equations, with its initial

conditions, does indeed have a trajectory on the potential energy surface

which goes into the saddle point at the critical load. Hoff and Bruce

pointed to this deficiency in the following statement of their paper re-

garding the critical value of their load parameter 0, (El), pp. Z84-5):

"If Q has this value one can say that it is possib7e for the initially

r
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disturbed system to be displaced to the stable 'buckled' equilibrium

configuration, (0, e z ), if it follows the appropriate path on the energy

surface. " We have underlined the words possible and if. The signifi-

cance of these words is amplified in the work done in [23, where the

Hoff and Bruce critical load is not regarded as a rigorous critical load

but as a lower bound or minimum pc'ssible critical load for dynamic

snap-through of the arch.

The question then arises: if the saddle point critical load

is a lower bound on the true critical load, how good an approximation

to the critical load is it? To investigate this question, it is necessary

to integrate the governing differential equations, to look for the minira-

urn load at which the solution exhibits snap-through, and to compare

this minimum load with the predictions of the potential surface analysis.

In carrying out this program, we cannot confine ourselves to perfect

arches of sinusoidal shape. Indeed, it is readily seen that if the

differential equations and subsidiary conditions are symmetric, then

the solutions obtained will be symmetric, and the trajectories of these

solutions could never approach a saddle point that is associated with an

unsymmetrical mode. It is necessary then to consider imperfections

or, at the least, to consider the limiting behavior of an imperfect

arch as the amplitude of the imperfections tends towards zero. A more

elaborate analysis [2) has already indicated that second harmonic (or

3
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first antisymmetric) imperfections will have the greatest effect on the

critical load and so, in the present paper, only the first and second

harmonics are considered to describe the initial shape and subsequen.;

deformaticn of the arch.

Viscoelasticity is introduced here because it is a more

realistic material description for dynamic problems than the assumption

of ideal elasticity, and also because it often makes the analysis less

ambiguous, as is illustrated by our study of dynamic buckling of a

single degree-of-freedom structure [3]. Perhaps more important,

however, is that we want to see whether the critical loads obtained for

the viscoelastic material in the limit as the viscosity parameter tends

to zero are the same as the critical loads obtained under the same con-

ditions for the elastic material in which the viscosity is equal to zero.

In the case of imperfections we already know that the limit of the

critical load for vanishing imperfections may not be equal to the

critical load for zero imperfections. We then may have a jump between

the limiting value and the value at zero. We want to see whether such

a jump is exhibited also with respect to the viscosity parameter.

We will also present, in addition to the investigations

already described, results on the effects of finite imperfections and

finite viscosity on the critical load. In this paper, we will discuss all

these questions only with regard to the following problem: the

4
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arch is considered hinged at both ends; the loading is sinusoidal in

shape, and is of constant magnitude and infinite duration in time; the

material of the arch is considered to be a Voigt solid.

2. BASIC EQUATIONS

Consider a shallow arch of span L, as shown in Fig. 1.

The cross section of the arch is assumed to be uniform along the span,

with cross-sectional area A and moment of inertia I about the central

axis. The load q(x) per unit length is suddenly applied at zero time

and maintained at constant magnitude thereafter. At time t, the central

axis of the arch, having original height wo(x), is deformed to a height

w (x, t). With use of d'Alembert's principle, the dynamic load is

q(x) + p Z- positive in the - w direction, as shown in Fig. 2, where

p is the mass of the arch per unit length. If we denote the horizontal

thrust, vertical shear and bending moment by H, V and M, respect-

ively, the equations of equilibrium can be obtained directly from Fig. 2:

V1 = - (q + pý) (1)

and

= V -Hw' ,(2

where (' and ()

"If the arch is elastic, the Euler-Bernoulli assumption gives

M E EI(w" -w (3)
0

O -
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I
where E is Young's modulus. From Eqs. (1), (2) and (3) the follow-

ing equation is obtained:

E I(w"" - w"') + Hw" + q+ p w = 0 . (4)

For shallow arches, the shortening of the length of the

arch during deformation can be written approximately as

and the horizontal thrust H can be expressed approximately as a

constant, viz.
AEA

H-" (6)

From Eqs. (4), (5) and (6), we then obtain

EI(w," w #) + w,, A JL[(w ) 2 ( ) 3
2dx+q+ P 0.

0 (7)

For an arch with both ends hinged, the deflection and the

bending moments at the ends must vanish. The boundary conditions are:

wo(0) = wo(L) = w(0, t) = w(L,t) = 0 , (8)

and

w#(0, t) = w (0) ; w'(L,t) = w '(L) (9)

These conditions are satisfied termwise if we put

w 0 (x) E- a fn i9n - (10)
n=-

and

6rnNn I nNnll N •k u~in ~ lmmmminmu
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/ ! Xi/a nt ninx- (11)

w(x, t) 2 b (t) sin
n= 1

where the deflections have been normalized with respect to the

radius of gyration (I/A) '/;, so that the constants a and the functionsn

b (t) are dimensionless. Further, let the load intensity be
n

represented by

n ,x
q(x) = • f sin - (12)

n Ln= l

Substituting Eqs. (10), (11) and (12) into Eq. (7), we obtain

a LO2' ,A Y " 1 2 P ]
z- _•nE(bn " an)+ n bnE E= Ij (bj- a') +1. e.T-J E4 [(;) f/+z p 0n

jn n n jnl Ze I n n]

for n= 1, 2,... (13)

We shall use the Voigt model to represent the viscoelastic

property of the arch. The elastic constant E in Eq. (13) is therefore

replaced by the differential operator E + tj -L, where E is the

Seffective spring constant and 11 is the effective viscosity of the

material. Consequently, Eq. (13) becomes

n n E°+ (bn- a n) b +n2 b n " ( a

I+ a A fn ++ Pb = 0

for n 1, 2,... (14)

Let us introduce the following dimensionless quantities

7
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and notation:

R (1) f /r"-n 214 kI n-
0

Tr an C):=::X = ?7~ y'-.) and 1") = () .(15)

0

Equation (14) becomes

n•I+ X (bn an n2 bn b. aX

j=l

+ R +b = 0
n n

for n=l, 2,... . (16)

We shall assume that the load distribution is sinusoidal

and consider only the first and second harmonics for the initial and

the deformed shapes of the arch, i. e.:

a =b = 0 for n I or 2 and R = 0 for n I.

n n n i
Put y= b, z =b,, y =a, z = a and r = . Substitution intoo z 1

Eq. (16) gives the governing differential equations for the motion of the

arch under these constraints:

[+ •[ya).+ 8yz.] + y-y. y(VZa 2 4z2-4z = 0,

(17)

and

i.+ 8x [2(1+ 22) + yz ,16 (7. z.) ,4z (y - y + 42 4z ) .

8



Solutions to t!,ese equations will be sought for the initial conditions:

y(0) = Yo z(0) = zo, (0) = y and (O) = i. (19)

We can, without restricting the essential problem, consider Y, > 0,

z - 0 and r - 0.
0

The critical points of Eqs. (17) and (18) are obtained by

setting j=-i=!=O in these equations. The critical points defined by

the pairs of values (ye, ze) satisfy the following equations simultan-

eously:

Ye Yo + Ye ( y03 + 4z 2 - 4z ) + r = 0 , (20)

4 4(z -o) + zeye - Yo + 4z - 4z = 0 . (21)

After z is eliminated from Eqs. (20) and (21), we obtain

(3yer+ yo[- r r+y y +yeye YO-4z +4 ye30.

*7 The energy equation can be derived from Eqs. (17),

4(18) and (19) by integration and addition. It can be written as

U + K + D= 0 (231,

where

U = potential energy

2 (y -yo + 8 -zo1 +4 iLY" Yo y +4 Z 2)+

+ r(y - yo); (24)

S .•9
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.K -- kinetic energy 60

g and

ii

D D total energy dissipation

t
- xJ ~A+ 1W~A + 2(yy + 4zi)2 ) dt (26)

Note that the datum of the potential surface U has been chosen so

that the initial value of U is zero. Equations (20) and (21) defining

the critical points of Eqs. (17) and (18) are the same as the equations

S•= 0 and - 0, respectively.ay C)z

3. PERFECT ARCHES WITH PERFECT INITIAL CONDITIONS
(z o = 0)

0

From Eqs. (17), (18) and (19), we find that unsymmetric

deformation of the arch can be caused byv qmall antisymmetric initial

velocities or imperfections in geometry. On the other hand, if the

initial conditions are entirely symmetric, i.e., if z 0 = 0, we
0 0

can conclude from Eq. (18) that z () 0. Therefore, under the

constraints assumed above, the deformation of a perfect sinusoidal

arch under perfect initial conditions remains symmetric, and the motion

o! the structure has only one degree of freedom which is described by

y(t). The differential equation and initial conditions are taken as

10
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+ x(l + 2y • + y -Yo + y 3 -yoy + r =0 (27)
00

y(O) = y and •(0) = 0 . (28)

The critical points in this problem are = , y =y

where Ye is a root of the following cubic equation (corresponding to

the roots of the square bracketed term in Eq. (22) when z = 0):0

Y 3 + ( - y o2) Ye + r - Yo = 0 . (29)

Typical solutions of Eqs. (27) and (28) are shown in

Fig. 3. These solutions were obtained by numerical integration (see

part (b) below). For positive x, these curves oscillate about one of

the stable equilibrium points (which are spiral points in the phase plane)

with decreasing amplitudes because of continuous energy dissipation.5

When the load parameter r passes through a critical values r there
c

occurs a sudden diversion of these curves from the neighborhood of

one equilibrium point to the neighborhood of the other.

For problems described by a single variable, the analysis

of dynamic snap-through is facilitated by the use of potential curves.

SWhen the value of x is very small, the structure may snap back
after the snap-through (see [3) ).

s In order to be able to distinguish the critical load values obtained

by numerical integration of the differential equations as opposed to
closed-form expressions for r obtained for particular cases by
use of the potential surface, we will adopt the convention of
identifying the latter by special subscripts (e. g. rcp, rcm, r rg,
r..), and we will reserve the notation r for the former.

c

11
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Equation (24) becomes )3"y)0

U - (y- y)2 + (y'• 2)2 + r'(y yo) (30)

Using r as a parameter, we can plot U as a function of y, as

shown in Fig. 4. A discussion of the application of the potential

curve, for dynamic buckling analysis in a dissipative system with a

single degree of freedom is given in [3). In the following parallel

discussion, snap-through, as a function of X, is discussed as three

cases.

(a) Elastic case (X = 0).

No solution of Eqs. (27) and (2b) can produce a positive U,

in view of Eq. (23). With r increasing from zero, then, the

minimum of the potential curve on the left of the U axi.s (Fig. 4)

will not be reached by a solution until the local maximum value of

U to the right of this minimum satisfies the condition U e S 0.e

Therefore, the critical load can be obtained by setting the value of

U equal to zero at the equilibrium point at which this maximum

is attained. This gives, from Eq. (30),

r = � (o Ye)[2 + (Y ) Y " (31)

By eliminating ye between Eqs. (29) and (31), we obtain an

expression for the critical load r

r p -[z, (9+y)- (-,o- 2 )(4y4 - 6) . (3•2)

12
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The values of r are plotted against y by one of the solid
cp t

lines in Fig. 5.

From Eqs. (29) and (30), the potential energy U at all

critical points is found to be

Ue .( 3 (y+Yo + (3 2 2)j (33)
1 .

If y is less than - (6)1/ = 1.224, Eq. (331 shows that Ue is

negative at all critical pointq; hence, the arch always deforms

to the inside-out position without snap-through.

(10) Viscoelastic case (0 < x <

For the viscoelastic case, it is necessary to use numerical

methods to solve the differential equation, Eq. (27), with the initial

condition, Eq. (2e). A Runge-Kutta-Gill method £4] has been used

for this purpose. The critical load rc is determined by the con-Ic

dition that the arch begins at that load to deform to the snapped-

through position. The results for cases x = 0.1 and 0.2 are

shown in Fig. 5 by solid lines.

A certain amount of energy is dissipated before the struc-

ture reaches the point of snap-through. Hence, the critical load

for the viscoelastic case is higher than that in the corresponding

elastic case. In the viscoelastic case, there is also a lower limit

for y such that, for any value of y less than this lower limit,

13
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the arch deforms to the inside-out position without snap-through.

(c) Quasi-static case (x =

The quasi-static case was first studied by Fung and

Kaplan [5]. The same results are obtained here in the limit of

infinite viscosity. When X = w, snap-through can occur only

when the maximum of the potential curve (Eq. 30) becomes a

b_ U
point of inflection, i. e., at y - y - 0. From this con-

dition we have

Ye 3 (y -1 (34)

The quasi-static critical load r can then be derived from
cs

Eqs. (29) and (34):

2 • I3/2I*
r y +y-(3pIy l (35)

CS 0 9 YO /

Li Fig. 5, r is plotted4 against y by a solid line. Note
cs 0

that when y < I, there cannot be a point of inflection on the

potential curve, Hence, for y < 1, the arch will deform to

an inside-out position under any positive load.

4. ARCHES WITH INFINITESIMAL GEOMETRIC IMPERFECTION(z:0+)•
0 -

The perfect arch discussed in the last section is an overly

idealized model. It is known that the critical load may change

drastically due to the effect of small geometric imperfections.

14 1
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General studies of this behavior for elastic structures have been made

* by Koiter [6) and Budiansky and Hutchinson [7 ]. For our study, we

shall again assume that 0 - " = 0 and consider the, following
0 0

three cases.

(a) Elastic case (x = 0).

The effect of infinitesimal geometric imperfections for

the problem of elastic shallow arches was first studied by Hoff

and Bruce [I£ with the use of the potential surface for the perfect

arch. Their results are to be obtained here through consideration

of the limiting behavior of an imperfect arch with vanishing

imperfections.

When the imperfection z is small, so that zoa < < Y02,
0 0

the critical points (ye, ze) can be determined by the following

two simultaneous equations derived from Eqs. (20) and (21):

Ye Yo+ y 2 + 4z 2  + r = 0 (36a)e o+Ye "e 0 e

4 (Ze o ) +e =Y y 0 + 4z e = 0 (36b)

Consider first that Yo is some fixed number and that

z tends to zero. In the limit as z tends to zero, z either

0o e

approaches zero or approaches a nonzero limit value. If ze

approaches zero, then Eq. (36a) reduces to Eq. (29). If z

approaches a nonzero limit, however, then Eq. (36b) becomes

iJs1

It
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z. Ye 2 y + 4z + 4)=0 (37)

When Yo 2, we see that the expression in parenthesis in

Eq. (37) is positive. Equation (37) would then imply z = 0.
e

Hence, the limit of z as z tends to zero can be differente o0:

from zero onlyif y > 2.

Equations (36a, b) can be combined to give

z 3ye + yo - r)4y2 =0

If the limit of z as z tends to zero is not zero, thise 0

equation gives in the limit

ye = (r - y yo -1 2 (38)

and it then follows from Eq. (37) that

212
Ze Y oY)-4 ( (r-y) yo- 2 . (39)

Of the three critical points on the y-axis, two are local

minima and one is a local maximrm. We shall denote the local

minima by M, and M2, where M, is the minimum closest to the

initial point. Equations (38) and (39) define two saddle points,

symmetric about z = 0.

From Eq. (24), the potential energy for small Zo is

The potential energy U = U at the saddle points is found from
e •

16j
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Eqs. (38), (39) and (40):

Ue : [) -4y° - 24 yo i- 2 (41)

Under small load, the trajectory of the motion on

(y, z) plane would move in the neighborhood of M 1 . The neigh-

borhood of Mg is not accessible until the load is increased

sufficiently so that there will exist a trajectory leading to the

neighborhood of M2 and along which U is nonpositive. A

necessary condition for the existence at such a trajectory is

given by consideration of the saddle point on the potential sur-

face. The considered trajectory is seen to be impossible

unless r is large enough so that the saddle point value of Ue

of Eq. (41) is nonpositive. Hence, the critical condition of

Hoff and Bruce for snap-through is

U = 0 , (42)

at the saddle points, and the associated critical load is found

to be r:cm

r : 4yo - 2 (6 )la Yo _ 2.04 (43)

When Eq. (43) is used to substitute for r in Eqs. (38)

and (39), the coordinates of the saddle points at r = r are

cm

found to be

ye = y -y (6)1/2 (44a)

17
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(6)'-/2y° - 5z/2

z = 1-.(44b)

Equation (44b) shows that the saddle point does not exist if

is less than (51(6)42) = 2.04. At Yo = 5/(6)1/2, Eqs. (44a, b)

give ze = o, ye / I(6)1/a at rcm = 8/(6)1/2. This point is also a

root of Eq. (29). It is the critical point which corresponds to the

local maximum of U, as is discussed in case (a) of Section 3.

Moreover, the value of U at that local maximum is zero. Hence,

at y = 5/(6)1/2, we have r r = 8/(6)I/, the value of rcm cp cp

being computed from Eq. (32).

Consequently, Eq. (43) holds only for Yo > 2.04. For

y < 2.04, the critical load for the slightly imperfect arch is the

same as that for the perfect arch; it is r as given by Eq. (32).cp

In Fig. 7, the result of Eq. (43) is shown by one of the

dotted lines. It is seen that, if r is an accurate measure of

cm

critical load, then for yo > 2.04 the critical loads drop consider-

ably due to the effect of small antisymmetrical imperfections.

Since the above method of determining the critical load of

an imperfect arch does not examine the actual motion of the

structure, it does not enable one to assert that the trajectory will

pass through the saddle point even if Eq. (42, is satisfied. Equa-

tion (42) is a necessary condition for snap-through, but it io not a

sufficient condition.

18

°5 "• • - - . . .



In order to clkrify this point, we have obtained solutions

to Eqs. (17), (18) and (19) numerically by using very small

values for the geometrical imperfection parameter z in the

range 10"3 to 10-a. The critical loads obtain'ed from the
-4

numerical solution for z = 10 and various yo, as well as

those from Eqs. (32) and (43), are shown in Table 1 and Fig. 6.

It is found that the calculated r is in ag:'eement with the pre-c

dictions of Eq. (43) to within an error not exceeding a few percent.

These results confirm that it is impossible to produce

snap-through if the load is lower than the value r given bycm

Eq. (43). Consequently, the result of Hoff and Bruce furnishes

a lower bound and a good approximation to the critical load for

elastic arches with small imperfections, as was implied in [2]. The

following observations were made from the numerical results:

(i) the arch may oscillate nonlinearly for a period of time before

it snaps through; (ii) after snap-through, the arch may snap back

to its original shape.

If, for a fixed y > 2. 04, the calculated critical load r

is sought for very small values of z, anomalous results may be

obtained. Typical of such results are those shown in Table 2 for

Yo = 4. 5. Values of r appear to increase as z gets smaller.I:c o
The reason for this is that the potential surface over which the

19
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trajectory travels is very "flat". This follows because, for small

o at z = z is O(zo). Hence, in the absence of damping, the

arch can oscillate for very long periods before snap-through. If

the calculations on the computer are not continued lcng enough

for these very small values of z , then we run the risk of not

discerning motions which are actually buckled motions, simply

because they are not observed for long enough time.

(b) Viscoe lastic case (0 < x < o1

Values of r obtained by numerical solution of Eqs. (17),
c

(18) and (19) with X = 0. 1 and X = 0. 2 are shown in Fig. 7

_,
by dotted lines for very small imperfections (zo = 10 was the

value used) and by solid lines for zero imperfection. The closed-

form expressions obtained for the perfect elastic arch (Eqs. (32)

and (35)) are likewise represented by solid lines, while those for

the infinitesimally imriperfect elastic arch (Eq. (43) and Eq. (48)

below) are represented by dotted lines. As was noted in (c) of

Section 3, the limit x = gives the same results as for quasi-

static loading of - n elastic arch.

These curves show that for finite values of x, and for

values of Y. above a certain lower limit, r drops markedly withc

the introduction of a small imperfection. The lower limit for yo

which is 2. r,4 for the elastic arch, is seen to be highier for nonzero x.
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Moreover, the curious behavior exhibited in Table 2 for the

elastic arch with very small values of z is not shown for theo

viscoelastic arch; in the latter case, the limit value of r isC

approached continuously in the calculations as z goes to zero.0

(cf. also Fig. 8).

For values of YO not much above the lower limit, the

dotted curves for x = 0. 1 and x = 0. 2 in Fig. 7 are seen to

merge rapidly into a calculated dotted curve for X = • in Fig. 7.

Other data for smaller values of X, not shown in the figure,I exhibit the same behavior. The data for the elastic arch, however,

Sfollow close to the curve r for all Y > 2. 04. The transition
cm o} -I

between these two types of behavior occurs at values of x - 10

but computations are again difficult for this regime.

(c) Quasi-static case (X = a)

Fung and Kaplan ([51, pp. 14 and 15) considered in some

detail the snap-through of shallow arches due to antisymmetric

bifurcation in quasi-static loading if y is greater than

k(22)1/2 = 2. 34. To render the present paper reasonably complete,

we shall derive their results from our equations following the

approach given in [2].

For quasi-static equilibrium at a point (ye), under ae)e

load r, Eqs. (20) and (21) must be satisfied and in addition the

" W21
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potential energy U must obey the following stability condition there:

•U U 2• )

For z vanishingly small, we find from Eq. (24), the following partial
0

derivatives at points with z =0

a 2 2

U _= - 4 y U+4

Lyy -=+3y - Yo

zz = Z2  0 4

U - = 0zy Ty az

T he condition (45) can then be written as

U U

yy zz

If r is sufficiently small, so that Yo - Ye is small,

the inequality (46) is evidently satisfied. As r increases and y
decreases, either U or U will become negative, indicating a

yy zz

loss of stability. The critical values of Y are called Yc and Yc2:

Uyy Y0: y 3 ( 47a)

U =0: y0  4) (47b)zz Yc2 YO -4141

It is easily verified that at y = (22)1/2, we have Yc = Yc2  and

YO 2

[ [

- =.. . ..- = = =



U I.M

> >I
that y 2 < Yc for yo < • (22)l/2. Consequently, the critical

value of Ye is Ycl if Yo < I(22)I/, and it is Yc2 0f o >2

The corresponding values of r, with z vanishingly small, are
0

obtained by substitttion of y c and Yc2 for y into Eq. (29). There

is then obtained:
y - 1/2 2 1

"+ 2 ( 0yo (22)1/+ , (35)

2 )1/2 > 1 2"cs =y 0 + 3 (y - 4 yo = - (48)

The first equation above is identical to Eq. (35), which was derived

on the basis of symmetrical buckling. Equation (48) is the result of

Fung and Kaplan [5].

Quasi-static snap-through for this problem is summarized

in Table 3. It may be inferred from these results that the appearance

!P of the cross sections of the potential surface close to the y-axis is that

2
~~~0 ofavle7frY (22)1/• which changes to a ridge near

Ye if Y> (22)1/aS: c2 y 2 2

5. UPPER BOUND FOR ELASTIC ARCHES WITH INFINITESIMAL

IMPERFECTION

In contrast to the results for the perfect elastic arch, for

which an exact closed-form expression (r, Eq. (32)) for the critical
1 

1load can be determined for all values of Yo (yo > 2 (6)/) at which
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snap-through can occur, the critical load for an infinitesimally

imperfect arch cannot be represented in closed form for Yo > 5/1(6)1/2

It has been shown in the preceding section thatrc, Eq. (43), is a

cm

lower bound and generally a good approximation to rc for yo > 5/(6)42

An upper bound for r was proposed in [2), and a summary of the
c

results obtained there is as follows.

For any yo > 5/(6)1/ consider the load rcg which causes

the saddle points to disappear, i. e., the load which causes the z of
e

Eq. (39) to vanish. It is found that this load is

r y y + 3 (y - 4)1/2 (49)

cg o9o

Equation (49) has the same right-hand side as Eq. (48), but the

interpretation here is different. When the saddle points disappear,

they coalesce with one of the critical points on the y-axis. For _7

1 < 1221/ this critical point is the local maximum, but for

O (22)1/2, the critical point is the first minimum but When

this occurs, M, ii no longer a stable equilibrium point of the potential

surface with y and z coordinates, and dynamic snap-through must 4

eventually occur.

A critical condition will occur when either the potential U

is zero at the local maximum or M becomes unstable. The first

condition is governed by rcp and the second by rcg. The upper bound
.p
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It,:
4C

on r is determined by whichever of these two values, r or r
C cp cg

is the least for a given yo

These results,and the other results presented here on

dynamic buckling of an infinitesimally imperfect elastic shallow arch,

can be swnnmarized as follows:

y 1. 224 no snap-through

1.2L4 < y 0 5 2.04 r c= rcp

2.04 < Y 0 93.19 r -9r r (50)
ocm c cp

3.19 > y r -Nr - r
cm c cg

A comparison between this upper bound and the calculated

values of r c is shown in Table 1 and graphically in Fig. 6. The

upper bound is considerably larger than r c. The results of the present

investigation, as discussed above in part (b) of Section 4, place a new

interpretation on this upper bound, however. It is now seen that the

upper bound values for r in (50) may be those actually approached by somec

arches with very small viscosity (x = 0+) while the lower bound values

for r in (50) are those actually approached for elastic or zero vis-
Ic

cosity (x = 0) arches. In both cases we must consider that the arches

are slightly imperfect (z 0 =0+),

Io
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6. ARCHES WITH FINITE GEOMETRICAL IMPERFECTION (z >0+)
0

For the case of finite geometrical imperfections, the

critical loads can be found from the numerical solution of Eqs. (17),

(18) and (191., The critical loads for zo 0. 25 and .o=0 are shown _-

as dotted curves in Fig. 5. The critical loads for the x= curve are

obtained from the maximuml point of the r - e curve evaluated from

As compared with the case of the perfect arch, the critical

4 -

load is reduced considerably due to the imperfections. The reduction

Iii

increases with the value of ygo" The effect of finite imperfections for ••

various values of yo is shown in Fig. 8. As expected, the critical

0I
00

loaddeceaFora the casue of finiteiemtial imperfection sncrthes nacr

critica loadpevos cansbesfoond fro dsothenumeical solutheionca lofaqs (17)

(18)und (atV To=O ohe criialsoas for = 0.2 and 4 bu 0o aore =hown

7. PRINC IPA L C ONC LUSIONS •"

In summary, w5 he aobserved several types of discontinuous

behavior of the calculated snap-through load r as a function of the

imperfection amplitude z and the viscosity parameter x. This be- •

havior depends also upon the rise c as is discussed throughout the L

text, but in order to focus on the essential results, we will discuss the

function r (z x) within the range of yy upon which we calculated. fo

0 26
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a) The introduction of an "infinitesimal" imperfection

causes a jump or discontinuous drop in r: r (0+, x) < r (0, x) for

x - 0. Larger imperfections lower r continuously (Fig. 8),
c

b) The critical loads r (0+, 0) were found to be close to
c

but slightly above the Hoff and Bruce value (Eq. (43)) for the elastic

arch (see Table I and Fig. 6).

c) The critical loads r (0+, 0+) were found to be betweenc

the upper bound loads (Eq. (50)) by Simitses and the lower bound loads

(Eq. (43)) by Hoff and Bruce. A rapid increase of the critical load is

observed by introducing very small viscosity, i. e.,

r (0+, 0+) > r (0+, 0), (see Fig. 6).

d) For finite values of x and z (Fig. 7), rc increases with

increasing X to a maximum value determined by the quasi-static

snap-through load.

e) Computation of r for both z and X extremely smallc o

can lead to anomalous results for r because the arch canc

oscillate for a long time before snap-through.

A related problem of dynamic buckling of sinusoidal, simply-

supported shallow arches has been considered by Lock [8] . In h43

analysis, Lock considers what is called in the present paper the

27
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perfect arch, that is z = 0, but he includes infinitesimal initial
0

antisymmnetric velocity disturbances, that is i of the order of0

5 X 10"3, which are not considered here. These antisymmetric

initial velocity components serve in Lock's investigation to produce

antisymmetric snap-through. Moreover, in Lock's analysis, energy -

dissipation is introduced by external damping rather than by material

viscosity as is done in the present paper.

Since the conditions of imperfection, load application and

damping used in Lock's work and the present work are different, there

is no reason to expect the same conclusions. The following points can

be made in comparison of his results and our results:

(1) in the elastic case, Lock finds that the dynamic buckling j

load rc has a discontinuous jump at yo = 4.375. For y > 4.375,

the value of r can be higher than the quasi-static buckling load

r This behavior is not seen in the present case for yo f-4.5S.
cg

(2) In the case of small damping, Lock finds that the buckling

load for y Z 4.0 is essentially the quasi-static buckling load. The
0I

same result is also observed in our calculation (see Fig. 6).
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